Degenerate Parabolic Initial-Boundary Value Problems*
نویسنده
چکیده
in Hilbert space and their realizations in function spaces as initial-boundary value problems for partial differential equations which may contain degenerate or singular coefficients. The Cauchy problem consists of solving (1.1) subject to the initial condition Jdu(0) = h. We are concerned with the case where the solution is given by an analytic semigroup; it is this sense in which the Canchy problem is parabolic. Sufficient conditions for this to be the case are given in Theorem 1; this is a refinement of previously known results [15] to the linear problem and it extends the related work [13] to the (possibly) degenerate situation under consideration. Specifically, we do not assume ~ is invertible, but only that it is symmetric and non-negative. Our primary motivation for considering the Cauchy problem for (1.1) is to show that certain classes of mixed initial-boundary value problems for partial differential equations are well-posed. Theorem 2 shows that if the operators ~ / and 5fl have additional structure which is typical of those operators arising from (possibly degenerate) parabolic problems then the evolution equation (1.1) is equivalent to a partial differential equation
منابع مشابه
Nonlinear oblique derivative problems for singular degenerate parabolic equations on a general domain
We establish comparison and existence theorems of viscosity solutions of the initial-boundary value problem for some singular degenerate parabolic partial di/erential equations with nonlinear oblique derivative boundary conditions. The theorems cover the capillary problem for the mean curvature 1ow equation and apply to more general Neumann-type boundary problems for parabolic equations in the ...
متن کاملEntropy Solutions for Nonlinear Degenerate Elliptic-parabolic-hyperbolic Problems
We consider the nonlinear degenerate elliptic-parabolic-hyperbolic equation ∂tg(u)−∆b(u)− div Φ(u) = f(g(u)) in (0, T )× Ω, where g and b are nondecreasing continuous functions, Φ is vectorial and continuous, and f is Lipschitz continuous. We prove the existence, comparison and uniqueness of entropy solutions for the associated initial-boundary-value problem where Ω is a bounded domain in RN . ...
متن کاملA semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes
We prove the convergence of a semi-implicit monotone finite difference scheme approximating an initial-boundary value problem for a spatially one-dimensional quasilinear strongly degenerate parabolic equation, which is supplied with two different inhomogeneous flux-type boundary conditions. This problem arises in the modeling of the sedimentation-consolidation process. We formulate the definiti...
متن کاملBoundary-value Problems with Non-local Initial Condition for Parabolic Equations with Parameter
In 2002, J.M.Rassias (Uniqueness of quasi-regular solutions for bi-parabolic elliptic bi-hyperbolic Tricomi problem, Complex Variables, 47 (8) (2002), 707-718) imposed and investigated the biparabolic elliptic bi-hyperbolic mixed type partial differential equation of second order. In the present paper some boundary-value problems with non-local initial condition for model and degenerate parabol...
متن کاملOn uniqueness techniques for degenerate convection-diffusion problems
We survey recent developments and give some new results concerning uniqueness of weak and renormalized solutions for degenerate parabolic problems of the form ut − div (a0(∇w) + F (w)) = f , u ∈ β(w) for a maximal monotone graph β, a Leray-Lions type nonlinearity a0, a continuous convection flux F , and an initial condition u|t=0 = u0. The main difficulty lies in taking boundary conditions into...
متن کامل